Disconnect Between Hadley Cell and Subtropical Jet Variability and Response to Increased CO₂ Molly Menzel¹, Darryn Waugh^{1,2}, Kevin Grise³

October 22, 2019

¹Johns Hopkins University, ²University of New South Wales, ³University of Virginia

Subtropical Jet and Hadley Cell Relationship

By our current understanding of atmospheric general circulation, the subtropical jet's location should shift with the Hadley cell edge...

... the reanalyses and models do not support this.

-Waugh et al. 2018 -Solomon et al. 2016 -Davis and Birner 2017

60

Subtropical Jet and Hadley Cell Relationship

By our current understanding of atmospheric general circulation, the subtropical jet's location should shift with the Hadley cell edge...

... the reanalyses and models do not support this.

-Waugh et al. 2018 -Solomon et al. 2016 -Davis and Birner 2017

60

why is this?

Subtropical Jet and Hadley Cell Relationship

1. What is the natural, interannual relationship between the HC and STJ?

2. How do the STJ and HC respond to $4xCO_2$ forcing?

3. What are the physical processes that dictate HC and STJ behavior?

Hadley Cell "PSI500" $\phi HC = \phi(\psi_{500 hPa} = 0)$ $\psi HC = max(\psi_{500 hPa})$

Hadley Cell "PSI500" $\phi HC = \phi(\psi_{500 hPa} = 0)$ $\psi HC = max(\psi_{500 hPa})$ Eddy-Driven Jet (EDJ)

 $\varphi EDJ = \varphi(\max(u_{850 \ hPa}))$

Hadley Cell "PSI500" $\varphi HC = \varphi(\psi_{500 \ hPa} = 0)$ $\psi HC = max(\psi_{500 hPa})$ Eddy-Driven Jet (EDJ) $\varphi EDJ = \varphi(\max(u_{850 \ hPa}))$ Subtropical Jet (STJ) $\varphi STJ = \varphi(max(\Delta u))$ $uSTJ = \Delta u(\varphi STJ)$ $\Delta u = u_{100-400 \ hPa} - u_{850 \ hPa}$

4

CMIP5 Analysis

CMIP5 Data

Coupled Model Intercomparison Project (Phase 5)

Output from coupled simulations

→ *piControl*

Control with pre-industrial levels of CO2

CMIP5 Data

Coupled Model Intercomparison Project (Phase 5)

Output from coupled simulations

↓ *piControl*

Control with pre-industrial levels of CO2

Abrupt quadrupling of CO2, held fixed

CMIP5 Data

Coupled Model Intercomparison Project (Phase 5)

Output from coupled simulations

▼ piControl

Control with pre-industrial levels of CO2 abrupt4xCO2

Abrupt quadrupling of CO2, held fixed

ACCESS1-0	GISS-E2-R
bcc-csm1-1-m	HadGEM2-ES
bcc- $csm1$ -1	Inmcm4
CanESM2	IPSL-CM5A-LR
CCSM4	IPSL-CM5B-LR
CNRM-CM5	MIROC5
CSIRO-Mk3-6-0	MIROC-ESM
FGOALS-s2	MPI-ESM-LR
GFDL-CM3	MPI-ESM-P
GFDL-ESM2G	MRI-CGCM3
GFDL-ESM2M	NorESM1-M
GISS-E2-H	

HC

- Expands, weakens

EDJ

 Shifts poleward, strengthens

STJ

- Shifts poleward, weakens

Expanded HC - contracted HC

 $u(\phi HC > 2\sigma)$

 $u(\phi HC < 2\sigma)$

HC

- Expands, weakens

EDJ

 Shifts poleward, strengthens

STJ

- Shifts poleward, weakens

narrow tropical cooling

Expanded HC - contracted HC

 $u(\phi HC > 2\sigma)$

 $\sum u(\phi HC < 2\sigma)$

Southern Hemisphere

	ANN	DJF	MAM	JJA	SON
$\phi { m HC} \ \phi { m STJ}$	0.07 (0.23)	-0.1 (0.3)	0.1 (0.22)	0.12 (0.15)	-0.03 (0.22)
$\phi \mathrm{HC} \\ \mathrm{maxSTJ}$	-0.19 (0.16)	-0.34 (0.26)	-0.14 (0.16)	-0.25* (0.13)	-0.1 (0.17)

Northern Hemisphere

-0.39* (0.14)	-0.3* (0.13)	- 0.52* (0.13)	-0.29* (0.18)	-0.15 (0.15)
0.15 (0.18)	0.02 (0.12)	0.29* (0.16)	0.2 (0.17)	-0.08 (0.09)
ANN	DJF	MAM	JJA	SON

Menzel et al. 2019

Southern Hemisphere Northern Hemisphere ANN DJF MAM SON ANN DJF MAM JJA SON JJA 0.29* -0.08 -0.1 0.120.070.1 -0.03 0.150.020.2 ϕHC (0.23)(0.3)(0.22)(0.22)(0.18)(0.15)(0.12)(0.16)(0.17)(0.09) ϕSTJ $-0.39^{*} -0.3^{*} -0.52^{*} -0.29^{*} -0.15$ -0.14 -0.25* -0.34 -0.19 -0.1 ϕHC (0.26)(0.17) $\max STJ$ (0.16)(0.16)(0.13)(0.14)(0.13)(0.13)(0.18)(0.15)Menzel et al. 2019 Natural Variability HC Location More poleward HC, STJ Strength weaker STJ

CMIP5: Response

HC

- Expands, weakens

EDJ

 Shifts poleward, strengthens

STJ

 Shifts poleward, strengthens

CMIP5: Response

HC

- Expands, weakens

EDJ

 Shifts poleward, strengthens

STJ

 Shifts poleward, strengthens

broad warming

Warming Width: CMIP5

Similar patterns shown in

- Lu et al. 2008
- Sun et al. 2013
- Tandon et al. 2013

Menzel et al. 2019

Natural Variability 4xCO₂ Forcing Warming Width Temperature Temperature C f Pressure [hPa] 2002000.5 400 0 600 600 – Lu et al. 2008 -0.5 80 Sun et al. 2013 1 100 ____ 30 90 30 -90 0 60 -30 0 Latitude [°] Latitude [°] - Tandon et al. 2013 Menzel et al. 2019 (a) temperature, El Nino - La Nina more narrow HC 5 Narrow tropical 200 warming (ENSO) 400 -230 230 0 250 250 600 270 800 Poo 1000 -50 50 0 (b) temperature, trend Broad warming 200 (global forcing) 400 0 600 wider HC

Lu et al. 2008 1000

800

-50

0

50

10

60

90

Warming Metrics

Δ Temperature [°C]

Warming Metrics

ΔTemperature [°C]

200

CMIP5

CMIP5

Narrow tropical warming: HC contracts, STJ strengthens

CMIP5

Narrow tropical warming: HC contracts, STJ strengthens **Broad global warming:** HC expands, STJ strengthens

How consistent is this response?

Comparing with idealized atmospheric models:

- GFDL dry dynamical core Temperature perturbation as in Sun et al. 2013
- GFDL dry core with convection parameter Data from Tandon et al. 2013
- Aquaplanet with specified SSTs
 Data from Watt-Meyer and Frierson 2019

Conclusions

Key Takeaways

Southern Hemisphere

	ANN	DJF	MAM	JJA	SON
$\phi { m HC} { m maxSTJ}$	-0.19 (0.16)	-0.34 (0.26)	-0.14 (0.16)	-0.25* (0.13)	-0.1 (0.17)

Northern Hemisphere

ANN	DJF	MAM	JJA	SON
-0.39*	-0.3*	-0.52*	-0.29*	-0.15
(0.14)	(0.13)	(0.13)	(0.18)	(0.15)

1. The interannual relationship between HC edge and STJ strength is the opposite sign as the response to increased atmospheric CO_2

	Response to $4 \mathrm{xCO}_2$	τ
φΗC	Poleward shift	7
uSTJ	strengthening	40

Key Takeaways

1. The interannual relationship between HC edge and STJ strength is the opposite sign as the response to increased atmospheric CO_2

Southern Hemisphere

	ANN	DJF	MAM	JJA	SON
$\phi \mathrm{HC}$	-0.19	-0.34	-0.14	-0.25*	-0.1
xSTJ	(0.16)	(0.26)	(0.16)	(0.13)	(0.17)

Northern Hemisphere

ANN	DJF	MAM	JJA	SON
-0.39*	-0.3*	-0.52*	-0.29*	-0.15
(0.14)	(0.13)	(0.13)	(0.18)	(0.15)

	Response to $4 \mathrm{xCO}_2$	τ
φΗC	Poleward shift	7
uSTJ	strengthening	40

2. The STJ always strengthens given a warming while the HC's movement is dependent on the width of warming

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

1. How are the STJ and HC sensitive to meridional temperature gradients? 1^{st} Set of Runs: Tropical warming with various widths $(5^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}, 45^{\circ})$

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

- 1. How are the STJ and HC sensitive to meridional temperature gradients? 1^{st} Set of Runs: Tropical warming with various widths $(5^{\circ}, 15^{\circ}, 25^{\circ}, 35^{\circ}, 45^{\circ})$
- 2. How are the STJ and HC sensitive to changes in midlatitude eddies? 2^{nd} Set of Runs: Zonally symmetric tropical warming (no waves) 3^{rd} Set of Runs: Polar cooling $(60^{\circ}-90^{\circ})$

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

- 1. How are the STJ and HC sensitive to meridional temperature gradients? Analysis: Evaluate response as a function of warming width
- 2. How are the STJ and HC sensitive to changes in midlatitude eddies? Analysis: decomposition of momentum budget

$$\frac{\partial u}{\partial t} = (f + \overline{\zeta})\overline{v} - \frac{1}{a\cos^2\phi}\frac{\partial}{\partial\phi}\left(\overline{u'v'}\cos^2\phi\right)$$

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

- 1. How are the STJ and HC sensitive to meridional temperature gradients? Analysis: Evaluate response as a function of warming width
- 2. How are the STJ and HC sensitive to changes in midlatitude eddies? Analysis: decomposition of momentum budget

$$\frac{\partial u}{\partial t} = (f + \overline{\zeta})\overline{v} - \frac{1}{a\cos^2\phi}\frac{\partial}{\partial\phi}\left(\overline{u'v'}\cos^2\phi\right)$$

Questions?

Extra Slides

CMIP5: Interannual Correlations

ANN DJF MAM JJA SON 0.150.020.29* 0.2 -0.08 (0.18)(0.12)(0.16)(0.17)(0.09)0.8 $-0.39^* -0.3^* -0.52^* -0.29^*$ -0.15 0.6 (0.14)(0.13)(0.13)(0.18)(0.15)0.4 0.39* 0.21 0 -0.01 0.12(0.21)(0.18)(0.19)(0.06)(0.1)0.20.06 0.03-0.08 -0.01 -0.030 (0.16)(0.12)(0.19)(0.11)(0.12)-0.2-0.37* -0.22 -0.39* 0.01 -0.03 (0.15)(0.17)(0.17)(0.18)(0.14)-0.4-0.33* -0.25 -0.35* 0.03 -0.07 -0.6(0.18)(0.15)(0.21)(0.09)(0.14) 0.52^* 0.47^* 0.48^* 0.4* 0.45*-0.8 (0.11)(0.11)(0.11)(0.08)(0.1)-1

Menzel et al. 2019

Southern Hemisphere

	ANN	DJF	MAM	JJA	SON
$\phi \mathrm{HC} \ \phi \mathrm{STJ}$	0.07 (0.23)	-0.1 (0.3)	0.1 (0.22)	0.12 (0.15)	-0.03 (0.22)
$\phi HC maxSTJ$	-0.19 (0.16)	-0.34 (0.26)	-0.14 (0.16)	-0.25* (0.13)	-0.1 (0.17)
maxHC maxSTJ	0.26 (0.19)	0.06 (0.12)	0.26* (0.16)	0.18 (0.15)	0.22* (0.15)
$\begin{array}{c} {\rm maxHC} \\ \phi {\rm STJ} \end{array}$	-0.07 (0.2)	0.01 (0.08)	-0.11 (0.15)	-0.04 (0.18)	-0.08 (0.21)
$\phi { m STJ} \ { m maxSTJ}$	-0.35* (0.15)	-0.08 (0.17)	-0.21 (0.15)	-0.33* (0.15)	-0.27* (0.16)
$\phi HC maxHC$	-0.4* (0.11)	0 (0.12)	-0.31 (0.16)	-0.23* (0.12)	-0.35* (0.13)
$\phi { m HC} \ \phi { m EDJ}$	0.52* (0.14)	0.72* (0.06)	0.46 * (0.14)	0.24 (0.17)	0.4* (0.21)

Northern Hemisphere

Time series of metrics' response to $4xCO_2$

	Shift/Change	τ
НС	poleward	7
STJ	slight poleward	2
STJ	strengthening	40
НС	slight weakening	2

	Shift/Change	τ
φΗC	poleward	7
$\varphi(u'v')$	poleward	5

HC edge: – latitude of max eddy momentum flux $\varphi(u'v')$

	Shift/Change	τ
φΗC	poleward	7
o(u'v')	poleward	5
uSTJ	strengthening	40
дТ/ду	strengthening	40

HC edge: – latitude of max eddy momentum flux $\varphi(u'v')$

STJ strength: – max meridional temperature gradient $\partial T/\partial y$

HC:

- Expands (0.9°)
- Weakens $(0.5 \times 10^{10} \text{ kg s}^{-1})$

EDJ:

- Shifts poleward (2°)
- Strengthens (0.8 m s^{-1})

STJ

- Shifts poleward (0.3°)
- Weakens (0.9 m s^{-1})

 $4xCO_2$ Forcing Natural Variability CMIP5: CO₂ Response Natural Variability Meridional Streamfunction d) [hPa] 200 200400 400 Pressure 600 600 Expands (1.7°) 800 800 - Weakens $(0.4 \times 10^{10} \text{ kg s}^{-1})$ 1000 1000 -2 -60 -30 60 90 -60 -30 30 60 90 -90 30 -90 0 Zonal Wind Zonal Wind b \mathbf{e} Pressure [hPa] 200 200 2 400 400 600 600 -2 800 800 1000 1000 30 60 90 30 -60 -30 0 -90 -60 -30 0 60 90 -90 Temperature Temperature С Pressure [hPa] 2000.5400 0 600 600 -0.5800 90 30 60 90 -60 -30 30 60 -90 -30 -90 0 -60 Latitude [°] Latitude [°] Menzel et al. 2019

-1

-2

-5

10

5

0

-5

-10

EDJ:

HC:

—

- Shifts poleward (2.9°)
- Strengthens (1.6 m s⁻¹) ____

STJ

- Shifts poleward (0.4°)
- Strengthens (4.4 m s⁻¹) —

CMIP5: Interannual Correlations

	Southern Hemisphere			Northern Hemisphere				\mathbf{re}				
	ANN	DJF	MAM	JJA	SON		ANN	DJF	MAM	JJA	SON	1
$\phi { m EDJ} \ \phi { m STJ}$	-0.02 (0.24)	-0.18 (0.37)	0.08 (0.26)	-0.09 (0.08)	-0.11 (0.2)		0 (0.15)	-0.01 (0.15)	0.04 (0.13)	0.31 (0.27)	-0.17 (0.11)	0.8 0.6
$\phi { m EDJ} { m maxSTJ}$	0.01 (0.16)	-0.39 (0.35)	0.03 (0.16)	0.09 (0.15)	0.17 (0.15)		-0.38* (0.14)	-0.4* (0.12)	-0.31 (0.17)	-0.21 (0.27)	-0.32* (0.13)	0.4 0.2
$egin{array}{c} \max { m EDJ} \ \phi { m STJ} \end{array}$	0.08 (0.15)	0.04 (0.29)	0.03 (0.12)	0.2 (0.13)	0.01 (0.17)		0.17 (0.19)	0.27* (0.12)	0.12 (0.17)	0.31* (0.14)	0.19 (0.15)	-0.2 -0.4
$\max EDJ$ $\max STJ$	-0.11 (0.14)	-0.25 (0.13)	-0.08 (0.12)	-0.21 (0.16)	-0.12 (0.2)		-0.28* (0.25)	-0.2 (0.21)	-0.08 (0.19)	-0.06 (0.2)	-0.21* (0.11)	-0.6 -0.8 -1

CMIP5: CO₂ Response

CMIP5: CO₂ Response

Dry Dynamical Core

GFLD Spectral Core

Equilibrium Temperature (Held and Suarez 1994)

$$T_{eq} = max \left\{ 200, \left[315 - \delta_y (\sin \phi)^2 + T' - \delta_z \log \left(\frac{p}{p_0} \right) (\cos \phi)^2 \right] \left(\frac{p}{p_0} \right)^n \right\}$$

Dry Dynamical Core

GFLD Spectral Core

Equilibrium Temperature (Held and Suarez 1994)

$$T_{eq} = max \left\{ 200, \left[315 - \delta_y (\sin \phi)^2 + T' - \delta_z \log \left(\frac{p}{p_0} \right) (\cos \phi)^2 \right] \left(\frac{p}{p_0} \right)^{\kappa} \right\}$$

 $\begin{array}{l} \text{Tropical Warming (Sun et al. 2013)} \\ T' = \delta_y \left\{ \left[A + \; (\sin \phi)^{1.25} - (\sin \phi)^2 \right] \left[0.5 \; \left(1 - \tanh \left(\frac{\phi - \phi_0}{\delta \phi} \right) \right) \right] \right\} \end{array}$

Narrow	Broad
${\phi}_0=10^\circ$	$\phi_0=10^{\circ}$

Narrow Forcing

HC: Contracts (3.1°) , strengthens $(3.9(10^{10}) \text{ kg s}^{-1})$ EDJ: Shifts equatorward (4.8°) STJ: Strengthens (4.5 m s^{-1})

Narrow Forcing

HC: Contracts (3.1°) , strengthens $(3.9(10^{10}) \text{ kg s}^{-1})$ EDJ: Shifts equatorward (4.8°) STJ: Strengthens (4.5 m s^{-1})

Broad Forcing HC: Slight expansion (1.1°) EDJ: Shifts poleward (1.7°) STJ: Strengthens (3.9 m s⁻¹)

Narrow Forcing HC: Contracts, strengthens EDJ: Shifts equatorward STJ: Strengthens

Broad Forcing HC: Slight expansion EDJ: Shifts poleward STJ: Strengthens

Key Takeaways

1. CMIP5 analysis shows the STJ latitude does not co-vary interannually with the Hadley Cell HC edge but the STJ strength does moderately

	Southern Hemisphere			N	orthei	rn Hen	nisphe	re		
	ANN	DJF	MAM	JJA	SON	ANN	DJF	MAM	JJA	SON
$\phi \mathrm{HC}$	-0.19	-0.34	-0.14	-0.25*	-0.1	-0.39*	-0.3*	-0.52*	-0.29*	-0.15
\max STJ	(0.16)	(0.26)	(0.16)	(0.13)	(0.17)	(0.14)	(0.13)	(0.13)	(0.18)	(0.15)

- 2. The interannual relationship between HC edge and STJ strength is the opposite sign as the response to increased atmospheric CO_2
- 3. The differences in the HC-STJ relationship are related to the differing sensitivities of the HC and STJ to shifts in eddy momentum fluxes

Menzel, Molly E., Darryn Waugh, and Kevin Grise (2019). "Disconnect between Hadley Cell and Subtropical Jet variability and response to increased CO₂." *Geophysical Research Letters*.

What are the underlying physical processes that dictate the behavior of the STJ and HC?

What are the underlying physical processes that dictate the behavior of the STJ and HC?

- Warming of various widths
- Polar cooling
- Disable eddy parameterizations

	Perturk	Eddy	
Run	$\Delta \langle T_s \rangle$	$\Delta \phi_T$	permitting
1	$1.5\mathrm{K}$	5° - 45°	yes
2	3K	5° - 45°	yes
3	$1.5\mathrm{K}$	5° - 45°	no
4	-1.5K	60° - 90°	yes

What are the underlying physical processes that dictate the behavior of the STJ and HC?

- Warming of various widths
- Polar cooling
- Disable eddy parameterizations

	Perturb	Eddy	
Run	$\Delta \langle T_S \rangle$	$\Delta \phi_T$	permitting
1	$1.5\mathrm{K}$	5° - 45°	yes
2	3K	5° - 45°	yes
3	$1.5\mathrm{K}$	5° - 45°	no
4	-1.5K	60°-90°	yes

What are the underlying physical processes that dictate the behavior of the STJ and HC?

- Warming of various widths
- Polar cooling
- Disable eddy parameterizations

What are the underlying physical processes that dictate the behavior of the STJ and HC?

- Warming of various widths
- Polar cooling
- Disable eddys

