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How will the atmospheric general circulation 
respond to increases in CO2?
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A
stronomer, geoscientist, mathematician,
and meteorologist Edmond Halley is
probably best known for his remarkable
prediction, some 50 years in advance, of
the appearance of a comet on Christmas

Day 1758. Halley’s Comet last appeared in 1986, and
its return approximately every 76 years continues to
fascinate us.

Another remarkable scientific contribution by
Halley, also with enduring relevance, resulted from

his visit at age 20 to the South Atlantic island of Saint
Helena to map the stars of the Southern Hemi-
sphere. Although his voyage aboard an East India
Company ship was not, by a long shot, the first
crossing of the tropical ocean, Halley published the
first map of surface winds over the tropics and a
large portion of the globe from his and others’ ob-
servations.1 Figure 1 shows the scientist in his early
thirties, the period of his life when he produced and
analyzed the map (shown above). 

A key feature of Halley’s map, from both navi-
gational and geophysical perspectives, is the east-
erly trade winds—the relatively steady tropical and
subtropical winds blowing from the east and to-
ward the equator. Those winds stand in contrast to
the more variable winds blowing generally from the
west (“westerlies” ) at higher latitudes, mentioned
but not drawn on the map. Bounding the region of
easterly trade winds are zones of calm air near 30°
latitude in the Northern and Southern Hemi-
spheres. Most of the world’s deserts reside in those
subtropical zones, where slowly subsiding warm
and dry air suppresses the formation of clouds and
storms. 

Halley’s depiction of the tropical belt—the region
of easterlies in Earth’s tropics and subtropics—is in
remarkable agreement with our current under-
standing of average conditions, but the atmosphere

The belt emerges as a fundamental climatic feature of atmospheric circulation
patterns on a rotating and differentia lly heated planet. But locating its edges
and discerning anthropogenic influences remain difficult research problems.

Thomas Birner is an assistant professor in the department

of atmospheric science at Colorado State University in Fort

Collins. Sean Davisis a research scientist in the chemical 

sciences division of the National Oceanic and Atmospheric

Administration in Boulder, Colorado. Dian Seidel is a senior

scientist at NOAA’s Air Resources Laboratory in College Park,

Maryland.

The changing width of 

Thomas Birner, Sean M. Davis, and Dian J. SeidelEarth’s tropical belt

“What’s the good of Mercator’s North Poles and
Equators,

Tropics, Zones, and Meridian Lines?”
So the Bellman would cry: and the crew would

reply
“They are merely conventional signs!”

—Lewis Carroll, “The Hunting of the Snark”

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.220.60.110 On: Tue, 04 Aug 2015 18:37:17
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Knowledge Oversight!
Do we truly understand 

atmospheric circulation?
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Conclusion:
The subtropical jet (STJ) is not coupled to the Hadley cell 
(HC), there must be physical processes responsible for their 
distinctive behavior.

Menzel et al. 2019
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Metric Analysis

Lingering Question:

What are the physical processes responsible for the distinct 
behavior of the HC and STJ?

Menzel et al. 2019

Conclusion:
The subtropical jet (STJ) is not coupled to the Hadley cell 
(HC), there must be physical processes responsible for their 
distinctive behavior.
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The Hadley cell’s transient response follows 
that of the eddy momentum flux
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The subtropic jet’s transient response follows 
that of the meridional temperature gradients
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CMIP5

GISS

ERAi

GISS-E2.1: NASA Goddard Institute for Space Studies’ Global Climate Model
10 simulations, abrupt NxCO2

ERAi: ERA-interim reanalysis

GISS output provided by Clara Orbe and Ivan Mitevski
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CMIP5

GISS

ERAi

The Hadley cell and subtropical jet’s behavior 
is consistent with physical balance
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Physical Balances Analysis
Conclusion:
The Hadley cell (HC)’s behavior is 
consistent with meridional flow balance
and subtropical jet (STJ)’s behavior is 
consistent with thermal wind balance
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Physical Balances Analysis

Lingering Question:

What model processes are necessary to replicate the 
STJ-HC relationship shown in comprehensive 

climate models?

Conclusion:
The Hadley cell (HC)’s behavior is 
consistent with meridional flow balance
and subtropical jet (STJ)’s behavior is 
consistent with thermal wind balance
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Does a decoupling of the Hadley cell (HC) and 
subtropical jet (STJ) occur in a fully dry 

atmospheric model?
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Forced by an equilibrium temperature profile

Classical Setup: Held & Suarez (1994)

Teq set by an analytical function

𝑇𝑒𝑞 = 𝑚𝑎𝑥 𝑇𝑠𝑡𝑟𝑎𝑡 , 𝑇0 − 𝛿𝑦 sin𝜙 2 + 𝑇′ − 𝛿𝑧 log
𝑝

𝑝0
cos 𝜙 2

𝑝

𝑝0

𝜅

𝜕𝑇

𝜕𝑡
=
𝑇 − 𝑇𝑒𝑞

𝜏
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Equilibrium Temperature
[K]

Held & Suarez (1994)
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Simulated Temperature Simulated Wind
[K] [m s-1]

Held & Suarez (1994)

Equilibrium Temperature
(contour lines)
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Held & Suarez (1994)
Analytical, zonally symmetric Teq

CMIP5

GISS

ERAi

HS94
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Held & Suarez (1994)
Analytical, zonally symmetric Teq

CMIP5

GISS

ERAi

HS94

The Hadley cell (HC) and subtropical jet (STJ) 
are positively correlated



𝑇𝑒𝑞 = 𝑚𝑎𝑥 𝑇𝑠𝑡𝑟𝑎𝑡 , 𝑇0 − 𝛿𝑦 sin𝜙 2 + 𝑇′ − 𝛿𝑧 log
𝑝

𝑝0
cos 𝜙 2

𝑝

𝑝0

𝜅
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Forced by an equilibrium temperature profile

Classical Setup: Held & Suarez (1994)

Teq set by an analytical function

New Setup: Wu & Reichler (2018)

Teq derived by iteration to improve accuracy

𝑇𝑒𝑞 = 𝑇 𝜆, 𝜙, 𝑝, 𝑡

𝜕𝑇

𝜕𝑡
=
𝑇 − 𝑇𝑒𝑞

𝜏
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Wu & Reichler (2018) Held & Suarez (1994)

Teq Zonal Profile Zonally varying Zonally symmetric

Seasonality Seasonally varying No seasonality

Topography Realistic topography No topography

Stratosphere Improved 
(Jucker et al. 2014)

decreasing complexity
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Wu & Reichler (2018) Held & Suarez (1994)
[K] [K]

Simulated Temperature,
Equilibrium Temperature (contour lines)

DJF 
Climatology
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decreasing complexity

Wu & Reichler (2018) Held & Suarez (1994)

DJF 
Climatology

[m s-1][m s-1]

Simulated Wind
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decreasing complexity

Wu & Reichler (2018) ERA-interim Reanalysis

DJF 
Climatology

[m s-1][m s-1]

Simulated Wind
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Wu & Reichler (2018)
Derived by iteration, zonally and seasonally-varying Teq

CMIP5
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Wu & Reichler (2018)
Derived by iteration, zonally and seasonally-varying Teq

CMIP5

GISS

ERAi

WR18

HS94

A disconnect between the Hadley cell (HC) and 
subtropical jet (STJ) can occur in a dry model 
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Follow-up Question:

Is this a result of zonal variability in the “forcing”?

A disconnect between the Hadley cell (HC) and 
subtropical jet (STJ) can occur in a dry model 
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Wu & Reichler (2018) Wu & Reichler (2018),
Zonal

Held & Suarez (1994)

Teq Zonal Profile Zonally varying Zonally symmetric Zonally symmetric

Seasonality Seasonally varying Seasonally varying No seasonality

Topography Realistic topography No topography No topography

Stratosphere Improved 
(Jucker et al. 2014)

Improved 
(Jucker et al. 2014)

decreasing complexity
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decreasing complexity

Zonal Wu & Reichler (2018) Held & Suarez (1994)
[K] [K]

Simulated Temperature,
Equilibrium Temperature (contour lines)

DJF 
Climatology
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Zonal Wu & Reichler (2018) 3D Wu & Reichler (2018)

DJF 
Climatology

[m s-1][m s-1]

Simulated Wind



ERA-interim Reanalysis
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decreasing complexity

Zonal Wu & Reichler (2018)

DJF 
Climatology

[m s-1][m s-1]

Simulated Wind
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Zonal Wu & Reichler (2018)
Derived by iteration, zonally-symmetric, seasonally-varying Teq

CMIP5

GISS

ERAi

WR18 
(zonal)

WR18

HS94
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Zonal Wu & Reichler (2018)
Derived by iteration, zonally-symmetric, seasonally-varying Teq

CMIP5

GISS

ERAi

WR18 
(zonal)

WR18

HS94

A disconnect between the Hadley cell (HC) and 
subtropical jet (STJ) is not the result of 

zonal variability in forcing
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Follow-up Question:

What are the differences in the basic state?

It is not the result 
of zonal variability 
in the forcing 

The Hadley cell (HC) 
and subtropical jet 
(STJ) are positively 
correlated in the 
classical Held & 
Suarez (1994) setup

A disconnect 
between the HC 
and STJ can occur 
in a dry model 

BUT!
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Basic State Analysis
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Idealized Modelling
Conclusion:
A disconnect between the STJ and HC 
can occur in a fully dry atmospheric 
model when the model simulates a 
realistic STJ
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Hypothesis:
A coupling between the 

Hadley cell and subtropical jet occurs 
when eddy influence on the subtropical 

thermal wind balance is non-negligible
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GISS-E2.1 Model
NASA Goddard Institute for Space Studies’ Global Climate Model

1xCO2 5xCO2

1.5xCO2 6xCO2

2xCO2 7xCO2

3xCO2 8xCO2

4xCO2

𝜙𝑆𝑇𝐽

𝜙𝐸𝐷𝐽

𝜙𝐻𝐶

abruptNxCO2

Abrupt multiplying 
of CO2, held fixed

provided by
Clara Orbe and Ivan Mitevski



Hadley cell:
– Expands
– Weakens

Eddy-driven jet:
– Shifts poleward
– Strengthens

Subtropical jet:
– Shifts poleward
– Weakens

Menzel et al. 2019

CMIP5: Cooling



CMIP5: Warming
Hadley cell:
– Expands
– Weakens

Eddy-driven jet:
– Shifts poleward
– Strengthens

Subtropical jet:
– Shifts poleward
– Strengthens

Menzel et al. 2019
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Narrow tropical 
warming (ENSO)
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– Sun et al. 2014
– Tandon et al. 2014
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Warming Width

Menzel et al. 2019

more narrow 
HC

wider HCLu et al. 2008

stronger STJ

Narrow tropical 
warming (ENSO)

Broad warming
(global forcing)

– Lu et al. 2008
– Sun et al. 2014
– Tandon et al. 2014


